Berkeley Logic Interchange Format (BLIF)

University of California
Berkeley

July 28, 1992

The goa of BLIF is to describe a logic-level hierarchica circuit in textual form. A circuit is an arbitrary
combinational or sequential network of logicfunctions. A circuit can beviewed asadirected graph of combinational
logic nodes and sequentia logic elements. Each node has atwo-level, single-output logic function associated with
it. Each feedback loop must contain at least one latch. Each net (or signal) has only asingle driver, and either the
signa or the gate which drivesthe signal can be named without ambiguity.

In the following, angle-brackets surround nonterminals, and square-brackets surround optional constructs.

1 Models

A model isaflattened hierarchical circuit. A BLIF file can contain many model sand references to model sdescribed
in other BLIF files. A modéd is declared asfollows:

. model <decl - nodel - nanme>
.inputs <decl-input-1list>
.out puts <decl-output-1Iist>
.clock <decl-cl ock-1ist>
<command>

<comand>
. end

decl-model-nameis a string giving the name of the model.

decl-input-list is a white-space-separated list of strings (terminated by the end of the ling) giving the formal
input terminals for the model being declared. If thisis the first or only model, then these signals can be

identified as the primary inputs of the circuit. Multiple .inputs lines are allowed, and the lists of inputs are
concatenated.

decl-output-list is a white-space-separated list of strings (terminated by the end of the ling) giving the formal
output terminals for the model being declared. If thisis the first or only model, then these signals can be

identified as the primary outputs of the circuit. Multiple .outputs lines are allowed, and the lists of outputs
are concatenated.

decl-clock-list is a white-space-separated list of strings (terminated by the end of the line) giving the clocks for
the model being declared. Multiple .clock lines are alowed, and the lists of clocks are concatenated.
<l ogi c- gat e> <generic-1| atch> <library-gate>

command isoneof: <nodel -reference> <subfile-reference> <fsmdescription>
<cl ock-constrai nt> <del ay-constraint>

Each command is described in the following sections.

TheBLIF parser alows the .model, .inputs, .outputs, .clock and .end statementsto be optional. If .model is not
specified, the decl-model-name is assigned the name of the BLIF file being read. It isan error to usethe same string
for decl-model-name in more than one model. If .inputsis not specified, it can be inferred from the signalswhich
are not the outputs of any other logic block. Similarly, .outputs can be inferred from the signalswhich are not the
inputs to any other blocks. If any .inputs or .outputs are given, no inference is made; a node that is not an output
and does not fanout produces a warning message.

If .clock is not specified (e.g., for purely combinational circuits) there are no clocks. .end isimplied at end of
file or upon encountering another .model.

Important: the first model encountered in the main BLIF file is the one returned to the user. The only .clock,
clock-constraint, and timing-constraint constructs retained are the ones in the first model. All subsequent models
can beincorporated into the first model using the model-reference construct.

Anywherein thefilea'#" (hash) begins a comment that extends to the end of the current line. Note that the
character ‘#’ cannot be used in any signal names. A ‘\’ (backslash) as the last character of a non-comment line
indi cEz;\(tes chJncaImaIi on of the subsequent line to the current line. No whitespace should follow the ‘\ .

ample:

. model sinple

.inputs a

.outputs c

.hanes a b ¢ # . hanes described | ater
11 1

. end

unnamed node

.nanes a b \

c # ‘A" here only to denpnstrate its use
11 1

Both models*simple” and the unnamed model describe the same circuit.

2 Logic Gates

A logic-gate associates a logic function with a signal in the model, which can be used as an input to other logic
functions. A logic-gateis declared asfollows:

.names <in-1> <in-2> ... <in-n> <out put>
<si ngl e- out put - cover >

output is a string giving the name of the gate being defined.
in-1,in-2, ... in-n are strings giving the names of the inputsto the logic gate being defined.

single-output-cover is, formally, an n-input, 1-output PLA description of the logic function corresponding to the
logic gate. {0, 1, —} is used in the n-bit wide “input plane” and {0, 1} is used in the 1-bit wide “output
plane’. The oN-set is specified with 1's in the “output plane,” and the oFF-set is specified with 0's in the
“output plane.” The bc-set is specified for primary output nodes only, by using the construct .exdc.

A sample logic-gate with its single-output-cover:
.hames v3 v6 j u78 v13.15

1--0 1
-1-11
0-11 1

In agiven row of the single-output-cover, “1” means the input is used in uncomplemented form, “0” means
the input is complemented, and “—" means not used. Elements of arow are ANDed together, and then al rows are
ORed.

Asaresult, if thelast column (the “output plane”) of the single-output-cover isall 1's, thefirst n columns (the
“input plane”) of the single-output-cover can be viewed as the truth table for the logic gate named by the string
output. The order of the inputsin the single-output-cover is the same as the order of the stringsin-1, in-2, ..., in-n
in the .names line. A space between the columns of the “input plane” and the “output plane” isrequired.

The tranglation of the above samplelogic-gate into a sum-of-products notation would be as follows:

v13.15 = (v3 u78) + (v6 u78) + (v3 | u78)
To assign the constant “0” to some logic gatej , use the following construct:
. hames j
To assign the constant “1”, use the following:
. hanes j
1

Thestring output can be used astheinput to another logic-gate before thelogic-gate for output isitself defined.
For amore complete description of the PLA input format, see espresso(5).

3 External Don't Cares

External don’t cares are specified as a separate network within amodel, and are specified at the end of the model
specification. Each external don’t care function, which is specified by a .names construct, must be associated
with a primary output of the main model and specified as a function of the primary inputs of the main model
(hierarchical specification of externa don’t caresis currently not supported).

The externa don't cares are specified as follows:

.exdc .
.nanes <in-1> <in-2> ... <in-n> <output>
<si ngl e- out put - cover >

exdc indicates that the following .names constructs apply to the external don’t care network.
output is a string giving the name of the primary output for which the conditions are don’t cares.

in-1,in-2, ... in-n are strings giving the names of the primary inputswhich the don’t care conditions are expressed
intermsof.

single-output-cover is an n-input, 1-output PLA description of the logic function corresponding to thedon't care
conditionsfor the output.

Thefollowing is an example circuit with external don’t cares:

. model a
.inputs x vy
.outputs |j
.subckt b x=x y=y | 5
. exdc
nanes X |
1

.end

.model b
.inputs x vy
.outputs j
.hanes X y |
11 1

.end

The tranglation of the above exampleinto a sum-of-products notation would be as follows:

] o= x *y; .
external d.c. for j = x;

4 Flip flops and latches

A generic-latch isused to create adelay element in amodel. It represents one bit of memory or state information.
The generic-latch construct can be used to create any type of latch or flip-flop (see aso the library-gate section).
A generic-latch is declared as follows:

.latch <input> <output> [<type> <control>] [<init-val>]

input is the data input to the latch.

output is the output of the latch.

type isone of {fe, re, ah, a, as}, which correspond to “falling edge, active high,” “active low,”

or “asynchronous.”

rising edge,

control isthe clocking signal for thelatch. It can bea.clock of themodel, the output of any function in the model,
or theword “NIL” for no clock.

init-val is the initial state of the latch, which can be one of {0, 1, 2, 3}. “2” standsfor “don’t care” and “3” is
“unknown.” Unspecified, it is assumed “3.”

If alatch does not have a controlling clock specified, it is assumed that it is actually controlled by a single
global clock. The behavior of thisgloba clock may be interpreted differently by the various a gorithms that may
manipulate the model after the model has been read in. Therefore, the user should be aware of these varying
interpretations if latches are specified with no controlling clocks.

Important: All feedback loopsinamodel must go through ageneric-latch. Purely combinational -logiccycles
are not alowed.

Examples:

.inputs d # a clocked flip-flop
.out put q

.clock c

.latch d gre c O

.end

.inputs in # a very sinple sequential circuit
. out puts out

.latch out in O

.nanes in out

01

.end

5 Library Gates

A library-gate creates an instance of atechnol ogy-dependent logic gate and associatesit with anodethat represents
the output of thelogic gate. Thelogic function of the gate and its known technology dependent delays, drives, etc.
are stored with the library-gate. A library-gateis one of the following:

.gate <nane> <formal -actual -1ist> o
.M atch <name> <fornmal -actual -1ist> <control > [<init-val >]

4

name is the name of the .gate or .mlatch to instantiate. A gate or latch with this name must be present in the
current working library.

formal-actual-list is a mapping between the formal parameters of name (the terminals of the library-gate) and
the actual parameters of the current model (any signalsin this model). The format for a formal-actual-list
isawhite-space-separated sequence of assignment statements of the form:

formal 1=actual 1 formal 2=actual 2 ...

All of the formal parameters of name must be specified in the formal-actual-list and the single output of
name must be the last onein thelist.

control isthe clocking signal for the mlatch, which can be either a.clock of the model, the output of any function
in the model, or theword “NIL” for no clock.

init-val isthe initial state of the mlatch, which can be one of {0, 1, 2, 3}. “2” standsfor “don’t care’ and “3" is
“unknown.” Unspecified, it is assumed “3.”

A .gaterefersto atwo-leve representation of an arbitrary input, singleoutput gatein alibrary. A .gate appears
under a technology-independent interpretation as if it were a singlelogic-gate.

A .mlatch refers to a latch (not necessarily a D flip flop) in alibrary. A .mlatch appears under a technol ogy-
independent interpretation as if it were a single generic-latch and possibly a single logic-gate feeding the data
input of that generic-latch.

.gates and .mlatches are used to describe circuits that have been implemented using a specific library of
standard logic functions and their technol ogy-dependent properties. The library of library-gates must be read in

before aBLIF file containing .gate or .mlatch constructsisread in.
Thestring namerefersto aparticular gateor latchinthelibrary. Thenames®nand2,” “inv,” and*“jk_rising_edge’
in the following examples are descriptive names for gatesin the library. The following BLIF description:

.inputs vl v2

.out puts |

.gate nand2 A=vl B=v2 O=x # given: formals of this gate are A, B, O
.gate inv A=x O5j # given: formals of this gate are A & O
.end

could aso be specified in a technology-independent way (assuming “nand2” is a 2-input NAND gate and “inv” is
an INVERTER) as follows:

.inputs vl v2
.out puts |j
.names vl v2 x
0- 1

-01

. hames X |

01

.end

Similarly:

.inputs j kbar

.out puts out

.clock clk

.mMatch jk_rising_edge J=j K=k Q=q clk 1 # given: formals are J, K, Q
. hames g out

01
. hames kbar k
01

.end

could have been specified in a technology-independent way (assuming “jk_rising_edge” is a JK rising-edge-
triggered flip flop) as follows:

.inputs j kbar
.out puts out

.clock clk

.latch tenp g re clk 1 # the .latch

.nanes | k q tenp # the .nanes feeding the D input of the .latch
-01 1

1-0 1

.names g out
01

. hames kbar k
01
. end

6 Mode (subcircuit) references

A model-reference is used to insert the logic functions of one model into the body of another. It is defined as
follows:

. subckt <nodel - nane> <fornal -actual -1ist>

model-nameis astring giving the name of the model being inserted. It need not be previously defined in thisfile,
but should be defined somewherein either thisfile, a.search file, or amaster file that is .searching thisfile.
(see .search below)

formal-actual-listisamapping between the formal terminal s (the decl-input-list, decl-output-list, and decl-clock-
list) of the called model model-name and the actual parameters of the current model. The actual parameters
may be any signalsin the current model. The format for a formal-actual-list is the same as its format in a
library-gate.

A .subckt construct can be viewed as creating a copy of the logic functions of the called model model-name,
including al of model-name's generic-latches, inthe calling model. The hierarchical nature of the BLIF description
of the model does not have to be preserved. Subcircuits can be nested, but cannot be self-referentia or create a
cyclic dependency.

Unlikealibrary-gate, a model-reference is not limited to one output.

The formals need not be specified in the same order as they are defined in the decl-input-list, decl-output-
list, or decl-clock-list; elements of the lists can be intermingled in any order, provided the names are given
correctly. Warning messages are printed if elements of the decl-input-list or decl-clock-list are not driven by an
actual parameter or if elements of the decl-output-list do not fan out to an actual parameter. Elements of the

decl-clock-list and decl-input-list may be driven by any logic function of the calling model.
Example: rather than rewriting the entire BLIF description for a commonly used subcircuit several times, the
subcircuit can be described once and called as many times as necessary:

. model 4bit adder

.inputs A3 A2 A1 A0 B3 B2 B1 BO CIN

.outputs COUT S3 S2 S1 SO

. subckt full adder a=A0 b=B0 ci n=CI N s=S0 cout =CARRY1

.subckt full adder a=A3 b=B3 ci n=CARRY3 s=S3 cout=COUT

.subckt fulladder b=Bl a=Al ci n=CARRY1 s=XX cout =CARRY2

.subckt fulladder a=JJ b=B2 ci n=CARRY2 s=S2 cout =CARRY3
for the sake of exanple,

. nanes XX S1 # formal output ‘s’ does not fanout to a primary out put
11
.nanes A2 JJ # formal input ‘a’ does not fanin froma primry input
11

.end

. model ful |l adder
.inputs a b cin
.outputs s cout
.hanes a b k
10 1

011

.names k cin s
10 1

01 1

.hanes a b cin cout
11- 1

1-1 1

-11 1

. end

7 Subfile References

A subfile-referenceis:

.search <fil e-name>
file-name gives the name of thefile to search.

A subfile-reference directs the BLIF reader to read in and define all the models in file file-name. A subfile-
reference does not have to beinside of a.model. subfile-references can be nested.

Search fileswould usually be used to hold al the subcircuits referred to in model-references, while the master
file merely searches all the subfiles and instantiates all the subcircuitsit needs.

A subfile-reference is not equivalent to including the body of subfile file-name in the current file. It does not
patch fragments of BLIF into the current file; it pauses reading the current file, reads file-name as an independent,
self-contained file, then returns to reading the current file.

Thefirst .model in the master file is aways the one returned to the user, regardless of any subfile-references
than may precede it.

8 Finite State Machine Descriptions

A sequentia circuit can be specified in BLIF logic form, as a finite state machine, or both. An fsm-descriptionis
used to insert afinite state machine description of the current model. It isintended to represent the same sequential
circuit as the current model (which containslogic), but in FSM form. The format of an fsm-descriptionis:

.start_Kkiss

.1 <numi nput s>

. 0 <num out put s>

.p <numterns>]

.S <num st at es>]

.r <reset-state>]

i nput > <current-state> <next-state> <out put>

[
[
[
<

<i nput > <current-state> <next-state> <out put >
.end_Ki ss

[.latch_order <l atch-order-1list>]

[<code- mappi ng>]

num-inputs is the number of inputs to the FSM, which should agree with the number of inputs in the .inputs
construct for the current model.

num-outputsis the number of outputs of the FSM, which should agree with the number of outputsin the .outputs
construct for the current model.

num-terms is the number of “<input> <current-state> <next-state> <output>" 4-tuples that follow in the FSM
description.

num-statesis the number of distinct states that appear in “ <current-state>" and “<next-state>" columns.

reset-state is the symbolic name for the reset state for the FSM; it should appear somewhere in the “<current-
state>" column.

input is a sequence of num-inputs membersof {0, 1, —}.
output is a sequence of num-outputs members of {0, 1, —}.
current-state and next-state are symbolic names for the current state and next state transitions of the FSM.

latch-order-list is a white-space-separated sequence of latch outputs.

code-mapping is newline separated sequence of :

. code <synbol i c-nane> <encoded- name>

num-terms and num-states do not have to be specified. If the reset-stateis not given, it is assigned to be the
first state encountered in the “ <current-state>" column.

The ordering of the bitsin theinput and output fields will be the same as the ordering of the variables in the
.inputsand .outputs constructs if both an fsm-description and logic functions are given.

latch-order-list and code-mapping are meant to be used when both an fsm-description and alogical description
of the model are given. The two constructs together provide a correspondence between the latches in the logical
description and the state variablesin thefsm-description. Inacode-mapping, symbolic-nameconsistsof asymbolic
name from the “<current-state>" or “<next-state>" columns, and encoded-nameisthe pattern of bits ({0, 1}) that
represent the state encoding for symbolic-name. The code-mapping should only be givenif both an fsm-description
and logic functions are given. .latch-order establishes a mapping between the bits of the encoded-names of the
code-mapping construct and the latches of the network. The order of the bits in the encoded names will be the
same as the order of the latch outputs in the latch-order-list. There should be the same number of bits in the
encoded-name as there are latches if both an fsm-description and alogical description are specified.

If both logic-gates and an fsm-description of themaodel are given, thelogic-gate description of themodel should
be consistent with the fsm-description, that is, they should describe the same circuit. If they are not consistent
there will be no sensibleway to interpret the model, which should then cause an error to be returned.

If only the fsm-description of the network is given, it may be run through a state assignment routine and
given alogic implementation. A sole fsm-description, having no logic implementation, cannot be inserted into
another model by a model-reference; the state assigned network, or a network containing both logic-gates and an

fsm-description can.
Example of an fsm-description:

. model 101 # outputs 1 whenever last 3 inputs were 1, 0, 1
.start_Kkiss

i1

.01

0 st0O st0 O

1st0stl O

0 stl st2 0

1stlstlO

0 st2 st0 O

1st2 st3 1
0 st3 st2 0
1st3 st1 0
.end_Kki ss
.end

Above example with a consistent fsm-description and logical description:

. hode

.inputs vO

.outputs v3.2

.latch [6] v1 0
.latch [7] v2 0

i
.0
-p
S
.r st

0 stO
0 st1l
1 st2
1 stl
2 stO
2 st3
st3 st2
st3 stl
.end_Ki ss
.latch_order v1 v2
.code st0 00

.code stl1 11

.code st2 01

.code st3 10
.nanes vO0 [6]

11
.hames v0 v1 v2 [7]
-1- 1

1-0 1

.hanes vO v1 v2 v3.2

101 1
.end

RPOFRPORORrO
[efe] Jeololeoleole)

9 Clock Constraints

A clock-constraint is used to set up the behavior of the simulated clocks, and to specify how clock events (rising
or falling edges) occur relative to one another. A clock-constraint is one or more of the following:

.cYcIe <cycle-tinme>
.cl ock_event <event-percent> <event-1> [<event-2> ... <event-n>]

cycle-timeis afloating point number giving the clock cycle timefor the model. It isa unitless number that isto
beinterpreted by the user.

event-percent is a floating point number representing a percentage of the clock cycle time at which a specific
.clock_event occurs. Fifty percent iswritten as “50.0.”

event-1 through event-n are one of the following:

<rise-fall>" <cl ock-nanme>
(<rise-fall>"<cl ock-name> <bef ore> <after>)

whererise-fall iseither “r” or “f” and stands for the rising or falling edge of the clock and clock-nameis a
clock from the .clock construct. The apostrophe between rise-fall and clock-name is a seperator, and serves
no purpose in and of itself.

before and after are floating point numbersin the same“units’ asthecycle-time and are used to define the * skew”
in the clock edges. before represents maximum amount of time before the nomina time that the edge can
arrive; after represents the maximum amount of time after the nominal time that the edge can arrive. The
nomina time is event-percent%of the cycle-time. In the unparenthesized form for the clock-event, before
and after are assumed “0.0.”

All events, event-1 ... event-n, specified in asingle .clock _event are to be linked together. A routine changing

any one edge should also modify the occurrence time of al the related clock edges.
Example 1:

.clock clockl clock2
.clock_event 50.0 r’clockl (f'clock2 2.0 5.0)

Example 2:

.clock clockl clock2
.clock_event 50.0 r’clockl
.clock_event 50.0 (f’'clock2 2.0 5.0)

Both examples specify a nominal time of 50%o0f the cycle time, that the rising edge of clockl must occur at
exactly the nominal time, and that the falling edge of clock2 may occur from 2.0 units before to 5.0 units after the
nominal time.

In Example 1, if r’clockl islater moved to a different nominal time by some routine then f’ clock2 should also
be changed. However, in Example 2 changing r’clockl would not affect f’clock2 even though they originally
have the same value of event-percent.

10 Delay Constraints

A delay-constraint is used to specify parameters to more accurately compute the amount of time signals take to
propagate from one point to another inamodel. A delay-constraint is one or more of :

.area <area>

.del ay <in-nanme> <phase> <| oad> <max-|oad> <brise> <drise> <bfall> <dfall>
.wire_| oad_sl ope <l| oad>

.Wire <wire-|load-list>

.input_arrival <in-name> <rise> <fall> [<before-after> <event >]
.defaul t _input_arrival <rise> <fall>

.out put_required <out-nanme> <rise> <fall> [<before-after> <event >]
.default_output_required <rise> <fall>

.input_drive <in-nanme> <rise> <fall>

.defaul t _input _drive <rise> <fall>

.max_i nput | oad <I| oad>

.default_max_input | oad <l oad>

.out put _| oad <out - nane> <l oad>

.default_out put_| oad <l oad>

rise, fall, drive, and load are dl floating point numbers giving therisetime, fall time, input drive, and output load.
in-nameis aprimary input and out-nameis a primary output.
before-after can be one of {b, a}, corresponding to “before” or “after,” and event has the same format as the

unparenthesized form of event-1 in a clock-constraint.

10

.area setsthe area of the model to be area.

.delay sets the delay for input in-name. phase is one of “INv,” “NONINV,” or “UNKNOWN" for inverting, non-
inverting, or neither. max-load is a floating point number for the maximum load. brise, drise, bfall, and
dfall are floating point numbers giving the block rise, driverise, block fall, and drive fal forin-name.

.wire_load_slope sets the wire load slope for the model.
.wire setsthe wire loads for the model from thelist of floating point numbersin the wire-load-list.

input_arrival setsthe input arrival time for the input in-name. If the optional arguments are specified, then the
input arrival timeis relative to the event.

.output_required sets the output required time for the output out-name. If the optional arguments are specified,
then the output required timeis relative to the event.

.Input_drive sets the input drive for the input in-name.
.max_input_load sets the maximum load that the input in-name can handle.
.output_load sets the output load for the output out-name.

.default_input_arrival, .default_output_required, .default_input_drive, .default_output_load set the corresponding
default values for al the inputs/outputswhose values are not specifically set.

Thereisno actual unit for all the timing and load numbers. Special attention should be given when specifying
and interpreting the values. The timing numbers are assumed to be in the same “unit” as the cycle-time in the
.cycle construct.

11

